Edward Kissin (Joint work with V. Shulman)

Lipschitz functions on Hermitian Banach *-algebras.

We characterize semisimple Hermitian Banach *-algebras A with "rich" spaces of A-Lipschitz functions and describe these spaces. A continuous function g on a compact α in \mathbb{R} is an A-Lipschitz function, if there exists D > 0 such that

 $g(a), g(b) \in A \text{ and } \|g(a) - g(b)\|_A \le D\|a - b\|_A$

for all selfadjoint $a, b \in A$ with spectra in α : If A = B(H); then g is called an Operator Lipschitz function. Operator Lipschitz functions are differentiable at each point but not necessarily continuously differentiable.

For a unital Hermitian Banach *-algebra A; the presence of a non-linear A-Lipschitz function implies that A is a C*-algebra. If A only has fnite-dimensional irreducible representations and their dimensions are bounded, then the space of A-Lipschitz functions coincides with the space of all Lipschitz in the usual sense functions. Otherwise, it coincides with the space of all Operator Lipschitz functions.

The non-unital case is more varied. There is a large class of non-*C**-equivalent algebras whose spaces of *A*-Lipschitz functions contain all functions with Fourier transform \hat{g} satisfying $\int |t\hat{g}(t)| dt < \infty$. They are defined by a very mild condition: $g(t) = t^2$ is an *A*-

Lipschitz function. These algebras turned out to be isomorphic to symmetrically normed Jordan ideals of C^* -algebras. If the completion C(A) of A in the Ptak-Rajkov C^* -norm is not a CCR-algebra then all A-Lipschitz functions are Operator Lipschitzian. If it is a CCR-algebra then A-Lipschitz functions lie in the intersection of spaces of J-Lipschitz functions, where J are the symmetrically normed ideals of B(H) associated with irreducible representations of C(A).

[2000 MSC: 47A56,47L20]