Maria Joița

A Radon-Nikodym theorem for completely multi-positive linear maps and its applications

The concept of matricial order plays an important role to understand the infinite dimensional non-commutative structure of operator algebras. Completely positive maps, as the natural ordering attached to this structure have been studied extensively. In 1973, Paschke shows that a completely positive linear map from a C^* -algebra A to another C^* -algebra B induces a representation of the C^* -algebra A on a Hilbert C^* -module over B and proves a Radon-Nikodym type theorem which gives a description of the order relation in the set of all completely positive linear maps from a unital C^* -algebra A to a W^* -algebra B. Tsui extends the Paschke's results and he proves a Radon-Nikodym type theorem for completely positive linear maps between unital C^* -algebras. Using this theorem, he obtains characterizations of the extreme points in the set of all identity preserving completely positive linear maps from a C^* -algebra A to another C^* -algebra B and pure elements in the set of completely positive linear maps from A to B in terms of a self-dual Hilbert module structure induced by each completely positive linear map.

In 1999, Heo introduces the notion of completely multi-positive linear map between C^* algebras (that is, an $n \times n$ matrix of bounded linear maps from a C^* -algebra A to another C^* -algebra B which verifies the complete positivity condition) and he shows that a completely multi-positive linear map from A to B induces a representation of A on a Hilbert B -module that generalizes the Paschke's construction. In this talk, we extend the Tsui's results for completely multi-positive linear maps from a locally C^* -algebra A to a C^* -algebra B, and finally, as an application of these results, we determine a certain class of extreme points in the set of all identity preserving completely positive linear maps from A to $M_n(B)$.

[2000 MSC: 46L05; 46L08]